Abstract

By controlled deposition, TiOPc, a molecular semiconductor with anisotropic interactions can generate a molecular film with a characteristic pattern repeat size of 15 nm. This structure then served as a nanotemplate for a superlattice of C(60) clusters with characteristic diameters of 7 nm. As a result, C(60) deposition on the TiOPc film template forms a pattern of nanophase-separated C(60) and TiOPc domains with a characteristic domain size of 7 nm. This feature size is matched to the exciton diffusion length in photovoltaic materials composed of small organic molecules. A dislocation network in a molecular film provides a promising method for generating pattern features on the several-nanometer length scale, bridging the practical limits of "bottom up" and "top down" strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.