Abstract

In this paper, photocatalysts based on TiO2 nanotubes (TNTs) and TiO2 nanotube arrays (TNTAs) sensitized by Cu(II) meso-tetrakis(N-ethylpyridinium-4-yl) porphyrin (CuTEPyP) were synthesized and their structures were characterized by various analytical methods. The photocatalytic activities of both composites were then investigated through degradation of 4-nitrophenol (4-NP) in aqueous solutions under visible light irradiation. It was found that CuTEPyP/TNTAs could eliminate 95% 4-NP within 4 h, which was considerably higher than the yield obtained with CuTEPyP/TNTs (56%) under the same conditions. Compared to CuTEPyP/TNTs, the improved photocatalytic activity of CuTEPyP/TNTAs can be ascribed to increased light absorption, high separation rate of photo-generated charge pairs, and efficient charge transfer. A plausible photocatalytic degradation mechanism involving hydroxyl radicals, superoxide radical anions and singlet oxygen species was also proposed. This work presents an efficient paradigm for eliminating 4-NP under visible light irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.