Abstract

Efficient charge transfer and light-trapping units are pivotal prerequisites in the realm of Ti-based photoanode photoelectrochemical (PEC) water splitting. In this work, we successfully synthesized a ternary carbon quantum dots/Bi2S3 quantum dots/Nb-doped TiO2 nanotube arrays (CQDs/Bi2S3/TiNbO) composite photoanode for PEC water splitting. CQDs/Bi2S3/TiNbO composite photoanode exhibited a considerably elevated photocurrent density of 8.80 mA cm-2 at 1.23 V vs the reversible hydrogen electrode, which was 20.00 times better than that of TiO2 (0.44 mA cm-2). Furthermore, the CQDs/Bi2S3/TiNbO composite photoanode attested to exceptional stability, maintaining 92.54% of its initial current after 5 h of stability measurement. Nb-doping boosted the electrical conductivity, facilitating charge transfer at the solid-liquid interface. Moderate amounts of Bi2S3 quantum dots (QDs) and CQDs deposited on TiNbO provided abundant active sites for the electrolyte-photoanode interaction. Simultaneously, Bi2S3 QDs and CQDs synergistically functioned as light-trapping units to broaden the light absorption range from 396 to 530 nm, stimulating increased carrier generation within the composite photoanode. In comparison with pristine TiO, CQDs/Bi2S3/TiNbO photoanodes possessed a superior ability to promote interfacial reactions. This study may provide a strategy for developing high-performance Ti-based photoanodes with efficient charge transfer and light trapping units for highly driving solar-to-hydrogen conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.