Abstract

Water remediation techniques like photolysis have recently piqued the interest of many researchers due to water contamination resulting from heavy industrialization and urbanization. In the current work, as-synthesized TiO2 nanorod decorated vertically aligned silicon nanowire (SiNW) leads to a hierarchical morphological structure formation. The photocatalytic nature of the fabricated SiNW/TiO2 nanoheterojunction is examined by the dye degradation of textile pollutants like methylene blue (MB), rhodamine B (RhB), and eosin B (EB). The catalytic dye degradation investigations revealed that 4 h hydrothermal synthesis of TiO2 on the surface of SiNW (ST4) exhibited excellent catalytic behaviour. In the presence of H2O2 and UV irradiation, the ST4 nanoheterostructure can degrade 98.89% of the model pollutant methylene blue (MB) in 15 min, demonstrating remarkable photocatalytic performance. The direct Z-scheme heterojunction exhibited by the SiNW/TiO2 structure facilitates a more efficient charge transfer mechanism with higher reducing and oxidizing ability leading to enhanced photocatalytic behaviour. The degradation pathway examined by LC-MS studies demonstrated the complete breakdown of the organic MB dye molecules ultimately mineralizing into CO2, H2O, and other inorganic substances. The photocatalyst ST4 exhibited excellent reusability and stability after multiple cycles of dye degradation enabling its use in practical water purification purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call