Abstract

In this work, graphitic carbon nitride (g-C3N4)/titanium dioxide (TiO2) nanoparticles with heterostructures were synthesized in situ from a mixture of melamine and peroxo-titanium complexes in a calcination process. The TiO2 nanoparticles are well-dispersed on the g-C3N4 nanosheets. The prepared TiO2/g-C3N4 composites have a heterostructure and excellent photocatalytic activity for decomposing methylene blue (MB) under visible light irradiation. The as-obtained g-C3N4 embroiled with TiO2 has a much larger surface area than its components (66.7 and 6.6 m2·g−1 for TiO2 and g-C3N4 against 95.5–143.8 m2·g−1 for the composite, respectively). It enhances the separation of photo-generated charge carriers. The TiO2/g-C3N4 photocatalytic degradation of MB was investigated in aqueous heterogeneous suspensions. The experimental kinetic data for the photocatalytic process follow the pseudo-first-order kinetic model. Furthermore, TiO2/g-C3N4 retains high photocatalytic activity after four reaction cycles. In addition to prompt removal of the color, the TiO2/g-C3N4 photocatalyst can oxidize MB almost completely to final oxidation products. The pathway of MB decomposition was also addressed. Additionally, the TiO2/g-C3N4 photocatalytic system was employed to eliminate other typical organic pigments, such as malachite green, methyl blue, and methyl red. The TiO2/g-C3N4 material, with remarkable dye degradability, is a promising catalyst in industrial textile treatment and can find applications in light-harvesting systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.