Abstract

Effective capture and in situ photodegradation of methylene blue (MB) dye is a promising technique to purify wastewater containing MB. With recently elicited ripples of discovery on graphitic carbon nitride (g-C3N4), this study investigates the performance of g-C3N4 on photodegradation of MB. In this study, polyacrylonitrile (PAN) nanofibres embedded with g-C3N4 photocatalyst was successfully prepared using electrospinning technique which produced liquid-permeable self-supporting photocatalytic nanofibre mats that can be handled easily. Different configurations of g-C3N4 were synthesised, bulk g-C3N4 (bg-C3N4) and nanosheets g-C3N4 (nsg-C3N4) from urea using a green facile template-free method. Effective photocatalytic activity of the g-C3N4 nanofibres was confirmed by 97.3% degradation of MB under visible light irradiation. Photodegradation of MB in aqueous solution by g-C3N4 nanofibres predominantly attributed to the synergetic effects of MB adsorption by PAN nanofibres and photocatalytic degradation of MB by g-C3N4 photocatalyst. This present work not only presents the simplest ecofriendly and economical approach to fabricate g-C3N4 nanofibre photocatalyst, but also paves new opportunities for this advanced photocatalyst as great potential in environmental remediation for treatment of industrial MB wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call