Abstract

PurposeLittle is known about the ecotoxicity of nanomaterials and there are no specific guidelines for sample preparation and testing. We set out to establish whether the method used to prepare TiO2 dispersions had a significant impact on aquatic ecotoxicity. We also followed the formation of agglomerates during the incubation period. MethodsWe applied the algal growth inhibition test (OECD test guideline no. 201). Dispersions were prepared by stirring and/or ultrasonication for different durations, and by filtration according to an OECD procedure recommended for testing difficult substances. ResultsSamples stirred for 7 d were not toxic, but EC20 values could be calculated for all the other treatments. Shorter treatments generated EC20 values in the range 1–27 mg/L. Only the shortest treatment (1 min stirring, 1 min ultrasonication) produced an unusually high EC20 value, indicating low toxicity. Development of agglomerate size and of toxicity depends on the nanoparticles. We found that ecotoxicity was predominantly caused by a fraction of nanoparticles and agglomerates obtained by passing dispersions through a 0.22-µm filter. ConclusionsWe propose a short treatment regime to generate the most relevant ecotoxicity data for TiO2, for example stirring for 1 min followed by 3 min ultrasonication. Until more data concerning the ecotoxicity of different fractions are available, we recommend the testing of unfiltered dispersions rather than filtrates. Relating ecotoxicity to the total hydrodynamic surface of the nanomaterials rather than concentration does not seem to improve the accuracy of ecotoxicity assessments using the algal growth inhibition test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.