Abstract
The telomere-associated protein TIN2 localizes to both telomeres and mitochondria. Nevertheless, the impact of TIN2 on retinal pigment epithelial (RPE) cells in diabetic retinopathy (DR) remains unclear. This research aims to examine the role of TIN2 in the senescence of RPE and its potential as a therapeutic target. Western blotting and immunofluorescence staining were utilized to identify TIN2 expression and mitophagy. RT-qPCR was employed to identify senescent associated secretory phenotype (SASP) in ARPE-19 cells infected with TIN2 overexpression. To examine mitochondria and the cellular senescence of RPE, TEM, SA-β-gal staining, and cell cycle analysis were used. The impact of TIN2 was examined using OCT and immunohistochemistry in mice. DHE staining and ZO-1 immunofluorescence were applied to detect RPE oxidative stress and tight junctions. Our research revealed that increased mitochondria-localized TIN2 aggravated the cellular senescence of RPE cells both in vivo and in vitro under hyperglycemia. TIN2 overexpression stimulated the mTOR signaling pathway in ARPE-19 cells and exacerbated the inhibition of mitophagy levels under high glucose, which can be remedied through the mTOR inhibitor, rapamycin. Knockdown of TIN2 significantly reduced senescence and mitochondrial oxidative stress in ARPE-19 cells under high glucose and restored retinal thickness and RPE cell tight junctions in DR mice. Our study indicates that increased mitochondria-localized TIN2 induced cellular senescence in RPE via compromised mitophagy and activated mTOR signaling. These results propose that targeting TIN2 could potentially serve as a therapeutic strategy in the treatment of DR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.