Abstract
Tin pest is the product of the β → α allotropic transition at 13.2°C in pure tin. It is a brittle crumbly material, often responsible for the total disintegration of the sample. The transformation involves nucleation and growth, with an incubation period requiring months or years for completion. Experimental observations reveal a substantial inconsistency and an incomplete understanding of the process. Some alloy additions promote tin pest by reducing the incubation time, whereas others retard or inhibit its formation. Traditional solder alloys have generally been immune to tin pest in service due to the presence of lead, and bismuth and antimony as common impurities. However, the new generation of lead-free solders are more dilute—closely resembling tin. A much debated question is the susceptibility of these alloys to tin pest. Bulk samples of tin-0.5 copper solder undergo the transition at −18°C although not at −40°C after five years exposure. Other lead-free alloys (Sn–3.5Ag, Sn–3.8Cu–0.7Cu and Sn–Zn–Bi) are immune from tin pest after a similar period. Large scale model joints exhibit tin pest but it appears that actual joints may be resistant due to the limited free solder surface available and the constraint of intermetallic compounds and components. It seems likely that impurities are essential protection against tin pest, but for long term applications there is no certainty that tin pest and joint deterioration will never occur.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.