Abstract

Tin monoxide is a technologically important p-type material which has a layered structure dictated by nonbonded dispersion forces. As standard density functional theory (DFT) approaches are unable to account for dispersion forces properly, they routinely give rise to a poor description of the unit cell structure. This study therefore applies two forms of empirical dispersion corrections, using either atomic- or ionic-based parameters for the dispersion coefficients, to assess their ability to correctly model the atomic structure and the formation energies of the important p-type defects. Although both approaches show an improvement in the predicted unit cell structure over that with no dispersion corrections, the ionic-based parameter set shows significantly better results, with lattice vectors reproduced within 0.2% of experiment. The atomic-based parameters still predict a distorted cell though, which is carried through to the defective system. On the introduction of defects, a similar degree of structu...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.