Abstract
In this study, tin oxide (SnO2), molybdenum oxide (MoO3) and a mixed oxide based on tin and molybdenum (respectively, Sn100, Mo100 and SnMo25, synthesized by the impregnation method) were applied in xylose conversion. The best results were obtained employing Mo100 and SnMo25. In the presence of SnMo25, after 0.5 h, xylose conversions of 39.5%, 34.1% and 63.4% were obtained, respectively, at 110, 130 and 150 °C. For Mo100, conversions of 49.6%, 71.8% and 85.3% were attained under the same reaction conditions, showing that Mo100 provided the best conversion results. However, with the use of this catalyst there was an increase in the amount of soluble and insoluble polymeric material. In terms of the soluble products formed from xylose, depending on the reaction condition were detected xylulose (X), lyxose (L) and furfural (FUR), glyceraldehyde (GL), pyruvaldehyde (PYR), glycoaldehyde (GLYC), dihydroxyacetone (DHA), lactic acid (AL), levulinic acid (LA) and acetic acid (AA). However, with the use of Sn100 or without a catalyst (systems with low conversions) there was mainly the formation of lyxose. The use of Mo100 and SnMo25 (systems which exhibit high acidity) leads mainly to isomerization, epimerization and dehydration reactions, as in the case of the retro-aldol pathway and furfural conversion, highlighting the importance of Lewis and Bronsted acid sites in relation to modulating the selectivity of the systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.