Abstract

The adsorption of NH3 on the Lewis and Bronsted acid sites of MoO3 (010) surface has been investigated based on the density functional theory (DFT) method using the clusters models. The calculated results indicate that NH3 could strongly adsorb on both the Lewis and Bronsted acid sites in the form of NH3 species and NH4+ respectively, whereas the adsorption on the Lewis acid site is found to be more favorable energetically than that on the Bronsted acid site. For the Lewis acid site Mulliken population analysis shows a donation of lone pairs from NH3 to the surface and activation of N–H bond. The overlaps of N-s, N-p and Mo-d orbitals suggest the strong interaction between N and Mo atoms. For the Bronsted acid site N–H bond is also activated by the formation of NH4+ species. The hybridizations between H and O atoms as well as N and H atoms are the major reasons for strong chemical adsorption of NH3 and the existence of NH4+ species, which partly attributed to the presence of N–H… O hydrogen bonds. Furthermore, the formation of a second Lewis acid site at adjacent or diagonal site results in slight changes of adsorption stability, structural changes and charge redistributions, suggesting its small influence on NH3 adsorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.