Abstract

Learning outcomes This case is designed to enable students to understand the role of women in artificial intelligence (AI); understand the importance of ethics and diversity in the AI field; discuss the ethical issues of AI; study the implications of unethical AI; examine the dark side of corporate-backed AI research and the difficult relationship between corporate interests and AI ethics research; understand the role played by Gebru in promoting diversity and ethics in AI; and explore how Gebru can attract more women researchers in AI and lead the movement toward inclusive and equitable technology. Case overview/synopsis The case discusses how Timnit Gebru (She), a prominent AI researcher and former co-lead of the Ethical AI research team at Google, is leading the way in promoting diversity, inclusion and ethics in AI. Gebru, one of the most high-profile black women researchers, is an influential voice in the emerging field of ethical AI, which identifies issues based on bias, fairness, and responsibility. Gebru was fired from Google in December 2020 after the company asked her to retract a research paper she had co-authored about the pitfalls of large language models and embedded racial and gender bias in AI. While Google maintained that Gebru had resigned, she said she had been fired from her job after she had raised issues of discrimination in the workplace and drawn attention to bias in AI. In early December 2021, a year after being ousted from Google, Gebru launched an independent community-driven AI research organization called Distributed Artificial Intelligence Research (DAIR) to develop ethical AI, counter the influence of Big Tech in research and development of AI and increase the presence and inclusion of black researchers in the field of AI. The case discusses Gebru’s journey in creating DAIR, the goals of the organization and some of the challenges she could face along the way. As Gebru seeks to increase diversity in the field of AI and reduce the negative impacts of bias in the training data used in AI models, the challenges before her would be to develop a sustainable revenue model for DAIR, influence AI policies and practices inside Big Tech companies from the outside, inspire and encourage more women to enter the AI field and build a decentralized base of AI expertise. Complexity academic level This case is meant for MBA students. Social implications Teaching Notes are available for educators only. Subject code CCS 11: Strategy

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.