Abstract
Dynamic CMOS circuits are significantly used in high-performance very large-scale integrated (VLSI) systems. However, they suffer from limitations such as noise tolerance, charge leakage, and power consumption. With the escalating impact of process variations on design performance, aggressive technology scaling, noise in dynamic CMOS circuit has become an imperative design challenge. The design performance of dynamic circuits has to be first improved for reliable operation of VLSI systems. Alongside, this impact of process variation is worse in circuits with multiple timing paths such as those used in microprocessors. In this paper, these problems of process variations, timing, noise tolerance, and power are investigated together for performance optimization. We propose a process variation-aware load-balance of multiple paths transistor sizing algorithm to: 1) improve worst-case delay, delay uncertainty, and sensitivity due to process variations in dynamic CMOS circuits, and 2) optimize dynamic CMOS circuits with MOSFET-based keepers to improve the noise tolerance. Implemented using 90-nm CMOS process, the proposed algorithm has demonstrated an average improvement in worst-case delay by 34%, delay uncertainty by 40.3%, delay sensitivity by 25.1%, and noise margins by 19.4% when compared to their initial performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.