Abstract

The posterior parietal cortex (PPC) and the dorsolateral prefrontal cortex (DLPFC) are known to be part of a cortical network involved in visual spatial attention. Top-down control can modulate processing at target and distractor positions over a sequence of trials, leading to positive priming at prior target positions and negative priming at prior distractor positions. In order to elucidate the exact time course of this top-down mechanism we here propose a transcranial magnetic stimulation (TMS) protocol. Single-pulses were applied over the right PPC, the right DLPFC or over the vertex (sham stimulation) at five time intervals (50, 100, 150, 200, 250ms) after onset of a probe display during a spatial negative priming paradigm. Both suppression of the negative priming effect at a previous distractor position and enhancement of positive priming at a previous target position was found if a TMS pulse was applied 100ms after the probe display onset either over the right DLPFC or the right PPC. We suggest that top-down mechanisms within the right fronto-parietal attention network are compromised during TMS interference in this time window.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call