Abstract

The DUNE neutrino experiment far detector has a fiducial mass of 40 kt. The O(1M) readout channels are distributed over the four 10 kt modules and need to be synchronized with respect to each other to a precision of O(10 ns). The entire system needs to be synchronized with respect to GPS time to O(100 ns). The system needs to be reliable, simple and affordable. Clock and synchronization information are encoded on the same fibre using a protocol based on duty cycle shift keying (DCSK) with 8b10b encoding to ensure DC-balance. The use of DCSK allows the clock to be recovered directly by PLL based clock generators without needing to use a separate clock and data recovery (CDR) device. Small scale tests show a timing jitter at the endpoint of ≈10 ps with respect to the timing master.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.