Abstract

Time-space fluctuations of chlorophyll-a (Chl-a) within the region off central-southern Chile (33–42°S), and their association with meteorological-oceanographic conditions, were analyzed using satellite time series data (2002–2012). The mean distribution of moderate values of Chl-a (~0.5 mg∙m−3) in the northern section (33–38°S) extended out to ~200 km of the coast whereas they were restricted to a narrower band in the southern section (38–42°S). Mean wind stress and wind stress curl were upwelling favorable for most part of the year in the northern section whereas upwelling-downwelling periods were distinct in the southern section. The dominant frequency of Chl-a variability in the coastal zone and the coastal transition zone was annual, as it was for the rest of the variables, except in a transitional band between these zones and where a semi-permanent jet is located. At the annual frequency, the alongshore distribution of coastal Chl-a presented strong discontinuities, with minimum values around upwelling centers (~37 and 40°S) and higher values (> 2 mg∙m−3) in between. Also at the annual frequency, correlation analyses suggest that Ekman transport and Ekman pumping might act synchronously to extend the offshore distribution of the highest Chl-a values during the spring-summer period whereas mesoscale activity appears to contribute to Chl-a increases in the coastal transition zone. Sea surface temperature does not appear to be associated with the annual cycle of Chl-a in the coastal zone and in the coastal transition zone it might be linked to Chl-a variability through the effects of internal waves.

Highlights

  • IntroductionHCS; ~5–45°S), the NW Iberian Peninsula, NW Africa (Canary Current System), SW Africa (Benguela System), and off NW America (the California Current System), all display significant temporal and spatial variation [1,2]

  • Eastern Boundary Current (EBC) systems, including those off South America (Humboldt CurrentSystem, HCS; ~5–45°S), the NW Iberian Peninsula, NW Africa (Canary Current System), SW Africa (Benguela System), and off NW America, all display significant temporal and spatial variation [1,2]

  • Other physical processes with seasonal variability can be more relevant in producing enhancements in phytoplankton biomass in the coastal zone and/or in the adjacent CTZ [3,4,8,9,10,11]

Read more

Summary

Introduction

HCS; ~5–45°S), the NW Iberian Peninsula, NW Africa (Canary Current System), SW Africa (Benguela System), and off NW America (the California Current System), all display significant temporal and spatial variation [1,2]. These highly dynamic environments have many common dominant physical processes and have important differences within and between them. Other physical processes (e.g., sea level, wind stress curl, mesoscale activity, mixed layer depth) with seasonal variability can be more relevant in producing enhancements in phytoplankton biomass in the coastal zone and/or in the adjacent CTZ [3,4,8,9,10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call