Abstract

<p>The elevated atmospheric carbon dioxide concentration (CO<sub>2</sub>), as a key variable linking human activities and climate change, seriously affects the watershed hydrological processes. However, whether and how atmospheric CO<sub>2</sub> influences the watershed water-energy balance dynamics at multiple time scales have not been revealed. Based on long-term hydrometeorological data, the variation of non-stationary parameter n series in the Choudhury's equation in the mainstream of the Wei River Basin (WRB), the Jing River Basin (JRB) and Beiluo River Basin (BLRB), three typical Loess Plateau regions in China, was examined. Subsequently, the Empirical Mode Decomposition method was applied to explore the impact of CO<sub>2</sub> on watershed water-energy balance dynamics at multiple time scales. Results indicate that (1) in the context of warming and drying condition, annual n series in the WRB displays a significantly increasing trend, while that in the JRB and BLRB presents non-significantly decreasing trends; (2) the non-stationary n series was divided into 3-, 7-, 18-, exceeding 18-year time scale oscillations and a trend residual. In the WRB and BLRB, the overall variation of n was dominated by the residual, whereas in the JRB it was dominated by the 7-year time scale oscillation; (3) the relationship between CO<sub>2 </sub>concentration and n series was significant in the WRB except for 3-year time scale. In the JRB, CO<sub>2 </sub>concentration and n series were significantly correlated on the 7- and exceeding 7-year time scales, while in the BLRB, such a significant relationship existed only on the 18- and exceeding 18-year time scales. (4) CO<sub>2</sub>-driven temperature rise and vegetation greening elevated the aridity index and evaporation ratio, thus impacting watershed water-energy balance dynamics. This study provided a deeper explanation for the possible impact of CO<sub>2</sub> concentration on the watershed hydrological processes.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call