Abstract
In this paper, we use a large-scale dynamical systems perspective to provide a system-theoretic foundation for thermodynamics. Specifically, using a state space formulation, we develop a nonlinear compartmental dynamical system model characterized by energy conservation laws that is consistent with basic thermodynamic principles. In addition, we establish the existence of a unique, continuously differentiable global entropy function for our large-scale dynamical system, and using Lyapunov stability theory we show that the proposed thermodynamic model has convergent trajectories to Lyapunov stable equilibria determined by the system initial energies. Finally, using the system entropy, we establish the absence of Poincaré recurrence for our thermodynamic model and develop a clear connection between irreversibility, the second law of thermodynamics, and the entropic arrow of time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.