Abstract

X-ray-pump/x-ray-probe spectroscopy allows investigation of ultrafast x-ray induced molecular dynamics. X-ray absorption and Auger decay leave molecules in manifolds of transient intermediate states in the femtosecond time scale. By using an x-ray probe pulse, we can image nuclear wavepackets as a function of time using ion-ion coincidence spectroscopy to record ion momentum distributions and kinetic energy releases (KERs). Numerical simulations, a timedependent approach that includes both K-shell photoionization and Auger decay, show how the transient intermediate states are projected onto the KERs. At short time delays, the measurements are sensitive to interatomic interactions, whereas at longer delays the contribution from separated ions due to dissociative intermediate states becomes observable. We present simulations for the nitrogen molecule. These simulations have the potential to be extended to more complex molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.