Abstract
X-ray-pump/x-ray-probe spectroscopy allows investigation of ultrafast x-ray induced molecular dynamics. X-ray absorption and Auger decay leave molecules in manifolds of transient intermediate states in the femtosecond time scale. By using an x-ray probe pulse, we can image nuclear wavepackets as a function of time using ion-ion coincidence spectroscopy to record ion momentum distributions and kinetic energy releases (KERs). Numerical simulations, a timedependent approach that includes both K-shell photoionization and Auger decay, show how the transient intermediate states are projected onto the KERs. At short time delays, the measurements are sensitive to interatomic interactions, whereas at longer delays the contribution from separated ions due to dissociative intermediate states becomes observable. We present simulations for the nitrogen molecule. These simulations have the potential to be extended to more complex molecules.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have