Abstract
In this paper, the recirculation flow motion and mixing characteristics driven by air bubble stream in a rectangular water tank is studied. The time-resolved PIV technique is adopted for the quantitative visu- alization and analysis. 488 nm Ar-ion CW laser is used for illumination and orange fluorescent (λex=540 nm, λem=560 nm) particle images are acquired by a PCO 10bit high-speed CCD camera (1280×1024). To obtain clean particle images, 545 nm long pass optical filter and an image intensifier are employed and the flow rates of compressed air is 3 l/min at 0.5 MPa. The recirculation and mixing flow field is further investigated by time-resolved POD analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortex structures moving along with large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have