Abstract

We report on the high-resolution multidimensional real-time mapping of H2+ and D2+ nuclear wave packets performed employing time-resolved three-dimensional Coulomb explosion imaging with intense laser pulses. Exploiting a combination of a "reaction microscope" spectrometer and a pump-probe setup with two intense 6-7 fs laser pulses, we simultaneously visualize both vibrational and rotational motion of the molecule, and obtain a sequence of snapshots of the squared ro-vibrational wave function with time-step resolution of ~ 0.3 fs, allowing us to reconstruct a real-time movie of the ultrafast molecular motion. We observe fast dephasing, or 'collapse' of the vibrational wave packet and its subsequent revival, as well as signatures of rotational excitation. For D2+ we resolve also the fractional revivals resulting from the interference between the counter-propagating parts of the wave packet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call