Abstract
The methods of time-resolved laser optoacoustic tomography of inhomogeneous media and related problems are reviewed. Time-resolved laser optoacoustic tomography allows one to measure the distribution of light absorption in turbid media with depth resolution up to several microns in real time. The theory of laser excitation of acoustic waves by absorbing of light in particles, dispersed in transparent, light-absorbing or scattering media, is developed. The distribution of light absorption can be obtained from the temporal course of acoustic pressure. Two schemes of acoustic wave detection — in the medium under testing (direct detection) and in transparent medium, coupled to the investigated one (indirect detection) — are discussed. In both cases the reconstruction of light absorption can be made by simple calculations. Test experiments with homogeneous and layered media confirm the proposed theoretical models and the possibility of using the proposed experimental schemes. Light absorption in homogeneous, inhomogeneous media and in absorbing particles dispersed in turbid media was investigated. The experimental setup allows one to measure the absorption coefficients over the range 1-500 cm−1 with the depth resolution 10–15 μm over the depth 1–1.5 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.