Abstract
The transient grating (TG) method is a powerful technique for monitoring the time dependence of the diffusion coefficient during photochemical reactions. However, the applications of this technique have been limited to photochemical reactions. Here, a microstopped flow (μ-SF) system is developed to expand the technique's applicability. The constructed μ-SF system can be used for a solution with a total volume as small as 3 μL, and mixing times for absorption and diffusion measurements were determined to be 400 μs and 100 ms, respectively. To demonstrate this system with the TG method, an acid-induced denaturation of a photosensor protein, phototropin LOV2 domain with a linker, was studied from the viewpoint of the reactivity. This system can be used not only for time-resolved diffusion measurement but also for conventional absorption or fluorescence detection methods. In particular, this system has a great advantage for a target solution in that only a very small amount is needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.