Abstract
We demonstrate a new method for simultaneous compensation of time-dependent and time-independent second- and third-order dispersion mismatches in an optical coherence tomography (OCT) system. There have been several methods for dispersion compensation in scanning interferometry by translating or tilting the diffraction grating in a rapid-scanning optical delay line (RSODL). Although these methods can provide a time-independent or time-dependent compensation of the second- or third-order dispersion, they cannot compensate the dispersion mismatch at both orders at the same time. However, the effects of both orders of dispersion mismatch caused by different lengths of fibers in the sample and reference arms in a fiber-based OCT system are significant and cannot be neglected. In this paper, we propose a new method for simultaneous compensation of time-dependent and time-independent second- and third-order dispersions by placing and adjusting a prism between the grating and the lens of the RSODL. The resulting dispersion can be calculated from the phase response of the RSODL with ray tracing analysis. The dependence of each order of dispersion on the configuration of the system is discussed with numerical analysis. The effects of the dispersion compensation are demonstrated with experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.