Abstract

Previous research has suggested that the motor interference effect of dangerous objects may originate from danger evaluations rather than direct response inhibition, as evidenced by a larger parietal P3 amplitude (which represents danger evaluations) under dangerous conditions than under safe conditions and an insignificant difference between dangerous and safe conditions in the frontal P3 component (which represents response inhibition). However, an alternative explanation exists for the null effect of the frontal P3 component. Specifically, this null effect may be attributed to cancellation between the theta and delta band oscillations, and only theta band oscillations represent response inhibition. To clarify this issue, the current study decomposed event-related potential data into different frequency bands using short-time Fourier transform. The results identified an insignificant difference of theta oscillations between dangerous and safe conditions in the mid-frontal area during a 200–500-ms time window. Instead, decreased alpha oscillations were identified in the dangerous compared with the safe condition in Go trials in the right parietal area during a 100–660-ms time window. Regression analyses further indicated that the alpha oscillations significantly contributed to the parietal P3 amplitude in the right parietal area. In summary, the results indicated that when an emergent dangerous object is encountered during the execution of prepared motor actions, an individual may tend to chiefly evaluate the potential dangerousness rather than directly suppress the prepared motor actions toward the dangerous object.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call