Abstract

A time discretization scheme is provided for the Zakai equation, a stochastic PDE which gives the conditional density of a diffusion process observed in white-noise. The case where the observation noise and the state noise are correlated, is considered. The numerical scheme is based on a Trotter-like product formula, which exhibits prediction and correction steps, and for which an error estimate of order δ is proved, where δ is the time discretization step. The correction step is associated with a degenerate second-order stochastic PDE, for which a representation result in terms of stochastic characteristics has been proved by Krylov-Rozovskii [13] and Kunita [15,17]. A discretization scheme is then provided to approximate these stochastic characteristics. Under the additional assumption that the correlation coefficient is constant, an error estimate of order is proved for the overall numerical scheme. This has been proved to be the best possible error estimate by Elliott-Glowinski [7].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.