Abstract
A hyperfinite Lévy process is an infinitesimal random walk (in the sense of nonstandard analysis) which with probability one is finite for all finite times. We develop the basic theory for hyperfinite Lévy processes and find a characterization in terms of transition probabilities. The standard part of a hyperfinite Lévy process is a (standard) Lévy process, and we show that given a generating triplet (γ, C, μ) for standard Lévy processes, we can construct hyperfinite Lévy processes whose standard parts correspond to this triplet. Hence all Lévy laws can be obtained from hyperfinite Lévy processes. The paper ends with a brief look at Malliavin calculus for hyperfinite Lévy processes including a version of the Clark-Haussmann-Ocone formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.