Abstract

It remains an important challenge to quantitatively describe the corrosion of reinforced concrete (RC) structures under chloride penetration. When considering the uncertainties encountered throughout the life cycle of RC structures exposed to a corrosive environment and evaluating their safety and reliability, the complexity of the problem intensifies. To address these issues, this paper focuses on the time-dependent reliability analysis of corroded RC beams, utilizing the phase-type (PH) fitting method. Initially, a model for the time-dependent reliability of corroded RC beams is established, incorporating the time-dependent chloride diffusion coefficient. Subsequently, a novel PH fitting method is proposed. The effectiveness of this new method is demonstrated through numerical examples. Furthermore, the time-dependent reliability analysis of corroded RC beams is compared using both the PH fitting method and the Monte Carlo simulation. The results reveal that the proposed method can accurately and efficiently deal with time-dependent reliability problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call