Abstract

The time dependence of correlations between the photons emitted from a microcavity with an embedded quantum dot under incoherent pumping is studied theoretically. Analytic expressions for the second-order correlation function g (2)(t) are presented in strong and weak coupling regimes. The qualitative difference between the incoherent and coherent pumping schemes in the strong coupling case is revealed: under incoherent pumping, the correlation function demonstrates pronounced Rabi oscillations, but in the resonant pumping case, these oscillations are suppressed. At high incoherent pumping, the correlations decay monoexponentially. The decay time nonmonotonically depends on the pumping value and has a maximum corresponding to the self-quenching transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.