Abstract
The equations of motion (EOMs) for spin orbitals in the coordinate representation are derived within the framework of the time-dependent multiconfiguration theory developed for electronic dynamics of molecules in intense laser fields. We then tailor the EOMs for diatomic (or linear) molecules to apply the theory to the electronic dynamics of a hydrogen molecule in an intense, near-infrared laser field. Numerical results are presented to demonstrate that the time-dependent numerical multiconfiguration wave function is able to describe the correlated electron motions as well as the ionization processes of a molecule in intense laser fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.