Abstract

Abstract We have developed a method for describing the reaction dynamics of a polyatomic molecule in intense laser fields. First, the dynamical behavior of H2+ and H2 in near-infrared, intense laser fields (I > 1013 W cm−2 and λ > 700 nm) was examined; accurate evaluation of the electronic and nuclear wave packet was achieved by the dual transformation method that we developed. Using “field-following” time-dependent adiabatic states defined as eigenfunctions of the “instantaneous” electronic Hamiltonian, we have clarified the dynamics of bound electrons, ionization processes, Coulomb explosion processes, and molecular vibrations of H2+ and H2. The analyses indicate that the multielectron dynamics and nuclear dynamics of polyatomic molecules in intense fields can be described by using the potential surfaces of time-dependent adiabatic states and the nonadiabatic coupling elements between those states. To obtain time-dependent adiabatic states of a molecule, one can diagonalize the electronic Hamiltonian including the interaction with the instantaneous laser electric field by ab initio molecular orbital (MO) methods. The time-dependent adiabatic potentials obtained are used to evaluate the multichannel nuclear dynamics until the next ionization process. We have applied the time-dependent adiabatic state approach to reveal the characteristic features of the dynamics of structural deformations of CO2 and its cations in a near-infrared intense laser field. The experimentally observed stretched and bent structure of CO23+ just before Coulomb explosions originates from the structural deformation of CO22+. We also revealed the mechanism of the experimentally observed bond dissociation of C2H5OH; we found that the relative probability of C–O bond cleavage to that of C–C bond cleavage becomes smaller with decreases in the pulse length. This example clearly shows that field-induced nonadiabatic transitions play a decisive role in the reaction dynamics of molecules in an intense laser field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.