Abstract
We develop a time-dependent variational Monte Carlo (t-VMC) method for quantum dynamics of strongly correlated electrons. The t-VMC method has been recently applied to bosonic systems and quantum spin systems. Here, we propose a time-dependent trial wave function with many variational parameters, which is suitable for nonequilibrium strongly correlated electron systems. As the trial state, we adopt the generalized pair-product wave function with correlation factors and quantum-number projections. This trial wave function has been proven to accurately describe ground states of strongly correlated electron systems. To show the accuracy and efficiency of our trial wave function in nonequilibrium states as well, we present our benchmark results for relaxation dynamics during and after interaction quench protocols of fermionic Hubbard models. We find that our trial wave function well reproduces the exact results for the time evolution of physical quantities such as energy, momentum distribution, spin structure factor, and superconducting correlations. These results show that the t-VMC with our trial wave function offers an efficient and accurate way to study challenging problems of nonequilibrium dynamics in strongly correlated electron systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.