Abstract

Quantum transport in molecular junctions has attracted great attention. The charge motion in a molecular junction can cause geometric deformation, leading to strong electron phonon coupling, which was often overlooked. We have formulated a nearly exact method to assess the time-dependent current and occupation number in the molecular junction modeled by the electron-phonon coupled bridge state using the time-dependent density matrix renormalization group (TD-DMRG) method. The oscillation period and amplitude of the current are found to be dependent on the electron phonon coupling strength and energy level alignment with the electrodes. In an attempt to better understand these phenomena, we have devised a new approximation that explains the bistability phenomenon and the behavior of steady currents in the strong electron-phonon coupling regime. Comparisons have been made with the multilayer-multiconfiguration time-dependent Hartree (ML-MCTDH) method and the analytical result in the purely electronic limit. Furthermore, we explore the entropy of different orderings, extending to the electron phonon model problems. Regarding finite temperature, the thermal Bogoliubov transformation of both fermions and bosons is used and compared with imaginary time evolution results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call