Abstract
The Density Matrix Renormalization Group (DMRG) method is widely used by computational physicists as a high accuracy tool to obtain the ground state of large quantum lattice models. Since the DMRG method has been originally developed for 1-D models, many extended method to a 2-D model have been proposed. However, some of them have issues in term of their accuracy. It is expected that the accuracy of the DMRG method extended directly to 2-D models is excellent. The direct extension DMRG method demands an enormous memory space. Therefore, we parallelize the matrix-vector multiplication in iterative methods for solving the eigenvalue problem, which is the most time- and memory-consuming operation. We find that the parallel efficiency of the direct extension DMRG method shows a good one as the number of states kept increases.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.