Abstract
Striatal dopamine loss in Parkinson's disease is accompanied by a dysregulation of corticostriatal glutamatergic neurotransmission. Within this study, we investigated striatal expression and activity of the glial high-affinity Na+/K+-dependent glutamate transporters, GLT-1 and GLAST, in the 6-hydroxydopamine hemi-Parkinson rat model at different time points after unilateral 6-hydroxydopamine injection into the medial forebrain bundle. Using semi-quantitative Western blotting and an ex vivo d-[3H]-aspartate uptake assay, we showed a time-dependent bilateral effect of unilateral 6-hydroxydopamine lesioning on the expression as well as activity of GLT-1. At 3 and 12 weeks post-lesion, striatal GLT-1 function was bilaterally upregulated whereas at 5 weeks there was no change. Even though our data do not allow a straightforward conclusion as for the role of glutamate transporters in the pathogenesis of the disease, they do clearly demonstrate a link between disturbed glutamatergic neurotransmission and glutamate transporter functioning in the striatum of a rat model for Parkinson's disease.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have