Abstract
Abstract— The Xe excitation efficiency for various Xe content was analyzed by monitoring the panel luminance and IR emission intensity. It was found that dependences of the Xe excitation efficiency and luminous efficacy on the sustain voltage show almost the same tendency. A decrease for increasing sustaining voltage was found in a low‐Xe‐content panel and an increase was found in a high‐Xe‐content panel. A reduction in the effective electron temperature and a reduction in plasma saturation contribute to the efficacy improvement. The time‐averaged spatial profile of the Xe excitation efficiency in PDPs was investigated by measuring the distribution of IR and blue‐phosphor emissions. The results show that the Xe excitation efficiency is similar in the cathode and anode regions even though the spatial and time development of the discharge in these regions is very different. An extended theory that takes into account not only the radiative transition process but also the collisional de‐excitation process from Xe** to Xe* is proposed for investigating the pressure dependence of the Xe excitation efficiency. By using the proposed theory, it was found that Xe excitation efficiency increases, attains a maximum value at 30% Xe, then decreases as the Xe content is increased, when the rate coefficient of the collisional de‐excitation process is less than 1.0 × 10−10 cm3/sec.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have