Abstract

We propose methods to solve time-varying, sensor and actuator (SaA) selection problems for uncertain cyber-physical systems. We show that many SaA selection problems for optimizing a variety of control and estimation metrics can be posed as semidefinite optimization problems with mixed-integer bilinear matrix inequalities (MIBMIs). Although this class of optimization problems is computationally challenging, we present tractable approaches that directly tackle MIBMIs, providing both upper and lower bounds, and that lead to effective heuristics for SaA selection. The upper and lower bounds are obtained via successive convex approximations and semidefinite programming relaxations, respectively, and selections are obtained with a slicing algorithm from the solutions of the bounding problems. Custom branch-and-bound and combinatorial greedy approaches are also developed for a broad class of systems for comparison. Finally, comprehensive numerical simulations are performed to compare the different methods and illustrate their effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.