Abstract
We formulate an influenza model with treatment and vaccination. Both time invariant and time-dependent uncertainty analyses and sensitivity analysis of the model parameter values are carried out to understand the dependence of the reproduction numbers and model state variables on their components. Results show that the relationship between treatment and epidemic size is nonlinear and that there exists a critical threshold treatment rate under which treatment is beneficial. Sensitivity analysis suggests that the most significant parameters are those related to infection transmission, infectiousness, duration of infectiousness and waning immunity. Further, there are important instances when the relationship between some parameters and model outputs changes behavior from negatively to positively correlated or vice versa because all sensitivity indices, except [Formula: see text] are functions of other parameters and thus will change with the change in parameter values. For example, treatment helps to lower the epidemic size, but may then become a “source” of infection likely due to resistance de novo. This knowledge is critical for proper public health planning and guidance of control strategies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.