Abstract

The noncentralized model predictive control (NC-MPC) framework in this paper refers to any distributed, hierarchical, or decentralized model predictive controller (or a combination of them) the structure of which can change over time and the control actions of which are not obtained based on a centralized computation. Within this framework, we propose suitable online methods to decide which information is shared and how this information is used between the different local predictive controllers operating in a decentralized, distributed, and/or hierarchical way. Evaluating all the possible structures of the NC-MPC controller leads to a combinatorial optimization problem. Therefore, we also propose heuristic reduction methods, to keep the number of NC-MPC problems tractable to be solved. To show the benefits of the proposed framework, a case study of a set of coupled water tanks is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.