Abstract

Time-varying linear regression via flexible least squares is used to determine temperature-dependent kinetic parameters during low-pressure, steady-state, temperature-programmed desorption from catalytic surfaces. The flexible least squares approach optimizes time-varying parameters by minimizing dynamic and measurement discrepancies between a linear theoretical model and experimental data using linear regression. The effectiveness of this approach is demonstrated by calculation of accurate temperature-dependent activation energies, preexponential factors, and differential conversion functions for the evolution of 3-methyl-2-oxetanone (β-lactone) during the selective oxidation of isobutane over aluminum phosphomolybdates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.