Abstract

The sensing system consisting of Light Detection and Ranging (LiDAR) and a camera provides complementary information about the surrounding environment. To take full advantage of multi-source data provided by different sensors, an accurate fusion of multi-source sensor information is needed. Time synchronization and space registration are the key technologies that affect the fusion accuracy of multi-source sensors. Due to the difference in data acquisition frequency and deviation in startup time between LiDAR and the camera, asynchronous data acquisition between LiDAR and camera is easy to occur, which has a significant influence on subsequent data fusion. Therefore, a time synchronization method of multi-source sensors based on frequency self-matching is developed in this paper. Without changing the sensor frequency, the sensor data are processed to obtain the same number of data frames and set the same ID number, so that the LiDAR and camera data correspond one by one. Finally, data frames are merged into new data packets to realize time synchronization between LiDAR and camera. Based on time synchronization, to achieve spatial synchronization, a nonlinear optimization algorithm of joint calibration parameters is used, which can effectively reduce the reprojection error in the process of sensor spatial registration. The accuracy of the proposed time synchronization method is 99.86% and the space registration accuracy is 99.79%, which is better than the calibration method of the Matlab calibration toolbox.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.