Abstract
The present paper introduced a framework for multi-level coupling transient electromagnetic fields (EMF) and mechanical structural dynamics based on the finite element method (FEM). This framework was dedicated to predicting, with better accuracy, the wave magnetic force density for obtaining the mechanical deformation occurring in electromagnetic actuators (EMAs). The first-level EMF transient model coupling is related to the magnetic field equations that are strongly coupled with the electric circuit input voltage equations. This is done by considering the magnetic saturation through the Newton–Raphson (N–R) method. The time-stepping solution of the EMF model resulted in the magnetic force densities being computed from the Lorentz force (LZ) expressions, based on the space–time variation of the induced eddy current. For the second coupling level, the EMF model was sequentially coupled with the mechanical structural deformation equations (MDef) through the local magnetic force density to achieve minimal material dynamic displacement and deformation. The developed multi-physics EMF–MDef time-stepping (FEM) model tools were implemented using the Matlab software.
Highlights
Electromagnetic devices/actuators (EMDs/electromagnetic actuators (EMAs)), such as electrical machines, sensors, actuators, magnetic/electrostatic micro- and nanoelectromechanical systems (MEMS/NEMS), etc., are currently used in a wide variety of applications ranging from industrial robotics/aerospace to automotive systems and biomedical devices that require high thrust, high accuracy, motion control, and different working ranges
We considered transient-voltage electromagnetic fields and the structural mechanical deformation phenomena using conducting and non-linear magnetic materials
The magnetic–electric coupled field models that were solved using finite element method (FEM) led to magnetic force density component computations from the Lorentz eddy current magnetic force (LZEC) under transient conditions
Summary
Electromagnetic devices/actuators (EMDs/EMAs), such as electrical machines, sensors, actuators, magnetic/electrostatic micro- and nanoelectromechanical systems (MEMS/NEMS), etc., are currently used in a wide variety of applications ranging from industrial robotics/aerospace to automotive systems and biomedical devices that require high thrust, high accuracy, motion control, and different working ranges. The operating principals of EMDs/EMAs are based on the interactions between the electromagnetic and mechanical structural dynamic phenomenon in weak couplings [1,2,3,4,5]. This phenomenon consists of electromagnetic induction excitations based on the magnetic force density and the structure mechanical stress response. The multi-physics numerical analysis of electromagnetic devices is based on the development of modern theoretical aspects and approaches for use in investigations in the industry [6,7]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have