Abstract

An algorithm is proposed for selecting a time step for the numerical solution of boundary value problems for parabolic equations. The solution is found by applying unconditionally stable implicit schemes, while the time step is selected using the solution produced by an explicit scheme. Explicit computational formulas are based on truncation error estimation at a new time level. Numerical results for a model parabolic boundary value problem are presented, which demonstrate the performance of the time step selection algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.