Abstract

Statistical estimates of the solutions of boundary value problems for parabolic equations with constant coefficients are constructed on paths of random walks. The phase space of these walks is a region in which the problem is solved or the boundary of the region. The simulation of the walks employs the explicit form of the fundamental solution; therefore, these algorithms cannot be directly applied to equations with variable coefficients. In the present work, unbiased and low-bias estimates of the solution of the boundary value problem for the heat equation with a variable coefficient multiplying the unknown function are constructed on the paths of a Markov chain of random walk on balloids. For studying the properties of the Markov chains and properties of the statistical estimates, the author extends von Neumann-Ulam scheme, known in the theory of Monte Carlo methods, to equations with a substochastic kernel. The algorithm is based on a new integral representation of the solution to the boundary value problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.