Abstract
Time series linear regression models with stationary residuals are a well studied topic, and have been widely applied in a number of fields. However, the stationarity assumption on the residuals seems to be restrictive. The analysis of relatively long stretches of time series data that may contain changes in the spectrum is of interest in many areas. Locally stationary processes have time-varying spectral densities, the structure of which smoothly changes in time. Therefore, we extend the model to the case of locally stationary residuals. The best linear unbiased estimator (BLUE) of vector of regression coefficients involves the residual covariance matrix which is usually unknown. Hence, we often use the least squares estimator (LSE), which is always feasible, but in general is not efficient. We evaluate the asymptotic covariance matrices of the BLUE and the LSE. We also study the efficiency of the LSE relative to the BLUE. Numerical examples illustrate the situation under locally stationary disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.