Abstract
Best linear unbiased estimators (BLUEs) of unknown parameters under linear models have minimum covariance matrices in the Lowner partial ordering among all linear unbiased estimators of the unknown parameters. Hence, BLUEs’ covariance matrices are usually used as a criterion to compare optimality with other types of estimator. During this work, people often need to establish certain equalities and inequalities for BLUEs’ covariance matrices, and use them in statistical inference of regression models. This paper aims at establishing some analytical formulas for calculating ranks and inertias of BLUEs’ covariance matrices under general linear model, and using these formulas in the comparison of covariance matrices of BLUEs with other types of estimator. This is in fact a mathematical work, and some new tools in matrix analysis are essentially utilized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.