Abstract
We consider ARCH processes with persistent covariates and provide asymptotic theories that explain how such covariates affect various characteristics of volatility. Specifically, we propose and study a volatility model, named ARCH-NNH model, that is an ARCH(1) process with a nonlinear function of a persistent, integrated or nearly integrated, explanatory variable. Statistical properties of time series given by this model are investigated for various volatility functions. It is shown that our model generates time series that have two prominent characteristics: high degree of volatility persistence and leptokurtosis. Due to persistent covariates, the time series generated by our model has the long memory property in volatility that is commonly observed in high frequency speculative returns. On the other hand, the sample kurtosis of the time series generated by our model either diverges or has a well-defined limiting distribution with support truncated on the left by the kurtosis of the innovation, which successfully explains the empirical finding of leptokurtosis in financial time series. We present two empirical applications of our model. It is shown that the default premium (the yield spread between Baa and Aaa corporate bonds) predicts stock return volatility, and the interest rate differential between two countries accounts for exchange rate return volatility. The forecast evaluation shows that our model generally performs better than GARCH(1,1) and FIGARCH at relatively lower frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.