Abstract
We investigate the time series properties of a volatility model, whose conditional variance is specified as in ARCH with an additional persistent covariate. The included covariate is assumed to be an integrated or nearly integrated process, with its effect on volatility given by a wide class of nonlinear volatility functions. In the paper, such a model is shown to generate many important characteristics that are commonly observed in financial time series. In particular, the model yields persistence in volatility, and also well predicts leptokurtosis. This is true for any type of volatility functions considered in the paper, as long as the covariate is integrated or nearly integrated. Stationary covariates cannot produce important characteristics observed in many financial time series. We present two empirical applications of the model, which show that the default premium (the yield spread between Baa and Aaa corporate bonds) affects stock return volatility and the interest rate differential between two countries accounts for exchange rate return volatility. The forecast evaluation shows that the model generally outperforms GARCH and FIGARCH at relatively lower frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.