Abstract
We study the performance of long short-term memory networks (LSTMs) and neural ordinary differential equations (NODEs) in learning latent-space representations of dynamical equations for an advection-dominated problem given by the viscous Burgers equation. Our formulation is devised in a nonintrusive manner with an equation-free evolution of dynamics in a reduced space with the latter being obtained through a proper orthogonal decomposition. In addition, we leverage the sequential nature of learning for both LSTMs and NODEs to demonstrate their capability for closure in systems that are not completely resolved in the reduced space. We assess our hypothesis for two advection-dominated problems given by the viscous Burgers equation. We observe that both LSTMs and NODEs are able to reproduce the effects of the absent scales for our test cases more effectively than does intrusive dynamics evolution through a Galerkin projection. This result empirically suggests that time-series learning techniques implicitly leverage a memory kernel for coarse-grained system closure as is suggested through the Mori–Zwanzig formalism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.